Source code for thema.multiverse.universe.galaxy

# File: multiverse/universe.py
# Lasted Updated: 05/15/24
# Updated By: JW

import glob
import importlib
import itertools
import os
import pickle

import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import yaml
from omegaconf import OmegaConf
from sklearn.cluster import AgglomerativeClustering
from sklearn.manifold import MDS

from ... import config
from ...utils import create_file_name, function_scheduler
from . import geodesics, starSelectors


[docs] class Galaxy: """ A space of stars. The largest space of data representations, a galaxy can be searched to find particular stars and systems most suitable for a particular explorer. Galaxy generates a space of star objects from the distribution of inner and outer systems. Members ------ data: str Path to the original raw data file. cleanDir: str Path to a populated directory containing Moons. projDir: str Path to a populated directory containing Comets outDir: str Path to an out directory to store star objects. selection: dict Dictionary containing selected representative stars. Set by collapse function. YAML_PATH: str Path to yaml configuration file. Functions --------- get_data_path() -> str returns path to the raw data file fit() -> None fits a space of Stars and saves to outDir collapse() -> list clusters and selects representatives of star models show_MDS() -> None plots a 2D representation of model layout save() -> None Saves instance to pickle file. Example -------- >>> cleanDir = <PATH TO MOON OBJECT FILES> >>> data = <PATH TO RAW DATA FILE> >>> projDir = <PATH TO COMET OBJECT FILES> >>> outDir = <PATH TO OUT DIRECTORY OF PROJECTIONS> >>> params = { ... "jmap": { "nCubes":[2,5,8], ... "percOverlap": [0.2, 0.4], ... "minIntersection":[-1], ... "clusterer": [["HDBSCAN", {"minDist":0.1}]] ... } ... } >>> galaxy = Galaxy(params=params, ... data=data, ... cleanDir = cleanDir, ... projDir = projDir, ... outDir = outDir) >>> galaxy.fit() >>> galaxy.show_MDS() >>> galaxy.collapse() ``` """ def __init__( self, params=None, data=None, cleanDir=None, projDir=None, outDir=None, metric="stellar_kernel_distance", selector="random", nReps=3, YAML_PATH=None, verbose=False, ): """ Constructs a Galaxy Instance Parameters ---------- NOTE: all parameters can be provided via the YAML_PATH attr. Please see docs/yaml_configuration.md. data : str, optional Path to input data cleanDir: str, optional Path to directory containg saved Moon Objects projDir: str, optional Path to directort containing saved Comet Objects outDir : str, optional The directory path where the stars will be saved. params: dict, optional A parameter dictionary specifying stars and corresponding parameter lists **Behavior** {"star0_name" : { "star0_parameter0":[list of star0_parameter0 values], "star0_parameter1": [list of star0_parameter1 values]}, "star1_name": {"star1_parameter0": [list of star1_parameter0 values]} } YAML_PATH : str, optional The path to a YAML file containing configuration settings. Default is None. verbose: bool Set to true to see warnings + print messages """ if YAML_PATH is not None: assert os.path.isfile(YAML_PATH), "yaml parameter file could not be found." try: with open(YAML_PATH, "r") as f: yamlParams = OmegaConf.load(f) except Exception as e: print(e) data = yamlParams.data cleanDir = os.path.join(yamlParams.outDir, yamlParams.runName + "/clean/") projDir = os.path.join( yamlParams.outDir, yamlParams.runName + "/projections/" ) outDir = os.path.join(yamlParams.outDir, yamlParams.runName + "/models/") metric = yamlParams.Galaxy.metric selector = yamlParams.Galaxy.selector nReps = yamlParams.Galaxy.nReps if type(yamlParams.Galaxy.stars) == str: stars = [yamlParams.Galaxy.stars] else: stars = yamlParams.Galaxy.stars self.params = {} for star in stars: self.params[star] = yamlParams.Galaxy[star] elif params is not None: self.params = params else: raise ValueError("please provide a parameter dictionary") self.data = data self.cleanDir = cleanDir self.projDir = projDir self.outDir = outDir self.metric = metric self.selector = selector self.nReps = nReps self.keys = None self.distances = None self.verbose = verbose assert self.data is not None, "Missing path to raw data file" assert self.cleanDir is not None, "Missing 'cleanDir' parameter'" assert self.projDir is not None, "Missing 'projDir' parameter" assert self.outDir is not None, "Missing 'outDir' parameter" assert os.path.isdir(self.cleanDir), "Invalid clean data directory." assert ( len(os.listdir(self.cleanDir)) > 0 ), "No clean data found. Please make sure you generated clean data." assert os.path.isdir(self.projDir), "Invalid projection directory." assert ( len(os.listdir(self.projDir)) > 0 ), "No projections found. Please make sure you have generated them correctly." if not os.path.isdir(self.outDir): try: os.makedirs(self.outDir) except Exception as e: print(e)
[docs] def fit(self): """ Configure and generate space of Stars Uses the `ProcessPoolExecutor` library to spawn multiple star instances and fit them. Returns ------ None Saves star objects to outDir """ subprocesses = [] for starName, starParamsDict in self.params.items(): star_configName = config.tag_to_class[starName] cfg = getattr(config, star_configName) module = importlib.import_module(cfg.module) star = module.initialize() cleanfile_pattern = os.path.join(self.cleanDir, "*.pkl") valid_cleanFiles = glob.glob(cleanfile_pattern) projfile_pattern = os.path.join(self.projDir, "*.pkl") valid_projFiles = glob.glob(projfile_pattern) for j, projFile in enumerate(valid_projFiles): projFile = os.path.join(self.projDir, projFile) with open(projFile, "rb") as f: cleanFile = pickle.load(f).get_clean_path() parameter_combinations = itertools.product( itertools.product( *[ starParamsDict[attr] for attr in sorted(cfg.__annotations__) if attr not in ["name", "module"] ] ) ) for k, combination in enumerate(parameter_combinations): starParameters = { key: value for key, value in zip( sorted(starParamsDict.keys()), combination[0] ) } cmd = ( self._instantiate_star, self.data, cleanFile, projFile, star, starParameters, starName, f"{k}_{j}", ) subprocesses.append(cmd) # TODO: Optimize max workers function_scheduler( subprocesses, 4, "SUCCESS: Graph Generation(s)", resilient=True, verbose=self.verbose, )
def _instantiate_star( self, data_path, cleanFile, projFile, star, starParameters, starName, id, ): """Helper function for the fit() method. Creates a Star instances and fits it. Parameters ---------- data_path: str Path to input data cleanFile: str Path to a moon instance. projFile: str Path to comet instance. star: class A class oject defined in stars/ starParameters: dict Parameter configuration for specified star. starName: str Name of star class id : int Identifier Returns ------- None See Also -------- `Star` class and stars directory for more info on an individual fit. """ my_star = star( data_path=data_path, clean_path=cleanFile, projection_path=projFile, **starParameters, ) my_star.fit() output_file = create_file_name(starName, starParameters, id) output_file = os.path.join(self.outDir, output_file) my_star.save(output_file)
[docs] def collapse(self, metric=None, nReps=None, selector=None, **kwargs): """ Collapses the space of Stars into a small number of representative Stars Parameters ---------- metric : str, optional The metric used when comparing graphs. Currently, we only support `stellar_kernel_distance`. (default: None) nReps : int, optional The number of representative stars. (default: None) selector : str, optional The selection criteria to choose representatives from a cluster. Currently, only "random" is supported. (default: None) **kwargs : dict Additional arguments necessary for different metric functions. Returns ------- dict A dictionary containing the path to the star and the size of the group it represents. Examples -------- >>> galaxy = Galaxy() >>> galaxy.collapse(metric='stellar_kernel_distance', nReps=5, selector='random') {'0': {'star': 'path/to/star1', 'cluster_size': 10}, '1': {'star': 'path/to/star2', 'cluster_size': 8}, '2': {'star': 'path/to/star3', 'cluster_size': 12}, '3': {'star': 'path/to/star4', 'cluster_size': 9}, '4': {'star': 'path/to/star5', 'cluster_size': 11}} """ if metric is None: metric = self.metric if nReps is None: nReps = self.nReps if selector is None: selector = self.selector metric = getattr(geodesics, metric) selector = getattr(starSelectors, selector) self.keys, self.distances = metric( files=self.outDir, filterfunction=None, **kwargs ) model = AgglomerativeClustering( metric="precomputed", linkage="average", compute_distances=True, distance_threshold=None, n_clusters=nReps, ) model.fit(self.distances) labels = model.labels_ self.clusters = {} for label in labels: mask = np.where(labels == label, True, False) subkeys = self.keys[mask] self.clusters[label] = subkeys self.selection = {} for key in self.clusters.keys(): subgroup = self.clusters[key] selected_star = selector(subgroup) self.selection[key] = { "star": selected_star, "cluster_size": len(subgroup), } return self.selection
[docs] def show_mds(self, randomState: int = None): """ Generates an embedding based on precomputed metric. Parameters --------- randomState : int, default None seed to set MDS and ensure reproducable results Returns ------ None Shows a plot of the embedding. """ if self.distances is None: metric = getattr(geodesics, self.metric) self.keys, self.distances = metric(files=self.outDir, filterfunction=None) mds = MDS(dissimilarity="precomputed", random_state=randomState) X = mds.fit_transform(X=self.distances) df = pd.DataFrame(X, columns=["x", "y"]) ## --> FIXME weird bug where, when running multiple times, this # continues appending to the front of the color scale colorscale = px.colors.sequential.Reds.copy() colorscale.insert(0, "rgba(255, 255, 255, 0)") # Create figure fig = go.Figure() # Add 2D histogram contour fig.add_trace( go.Histogram2dContour( colorbar={"title": "", "tickvals": []}, x=df["x"], y=df["y"], colorscale=colorscale, xaxis="x", yaxis="y", ) ) # Add scatter plot fig.add_trace( go.Scatter( x=df["x"], y=df["y"], mode="markers", marker={ "color": "grey", "opacity": 0.5, "line": {"width": 1, "color": "black"}, }, customdata=df.index, hovertemplate="Index: %{customdata}<extra></extra>", ) ) # Update fig axis template fig.update_layout(template="none", margin={"r": 100}) fig.add_annotation( x=1.1, y=0.5, xref="paper", yref="paper", text="Model Density", showarrow=False, font=dict(size=15), textangle=90, ) # Show figure import plotly.io as pio pio.show(fig)
# fig.show()
[docs] def save(self, file_path): """ Save the current object instance to a file using pickle serialization. Parameters --------- file_path: str The path to the file where the object will be saved. """ try: with open(file_path, "wb") as f: pickle.dump(self, f) except Exception as e: print(e)
[docs] def getParams(self): """ Returns the parameters of the Galaxy instance. Returns ------- dict A dictionary containing the parameters of the Galaxy instance. """ params = { "params": self.params, "data": self.data, "cleanDir": self.cleanDir, "projDir": self.projDir, "outDir": self.outDir, "metric": self.metric, "selector": self.selector, "nReps": self.nReps, "YAML_PATH": self.YAML_PATH, "verbose": self.verbose, } return params
[docs] def writeParams_toYaml(self, YAML_PATH=None): """ Write the parameters of the Galaxy instance to a YAML file. Parameters ---------- YAML_PATH: str, optional The path to the YAML file. If not provided, the YAML_PATH attribute of the instance will be used. Returns ------- None """ if YAML_PATH is None and self.YAML_PATH is not None: YAML_PATH = self.YAML_PATH if YAML_PATH is None and self.YAML_PATH is None: raise ValueError("Please provide a valid filepath to YAML") if not os.path.isfile(YAML_PATH): raise TypeError("File path does not point to a YAML file") with open(YAML_PATH, "r") as f: params = OmegaConf.load(f) params.Galaxy = self.getParams()["params"] params.Galaxy.stars = list(self.getParams()["params"].keys()) with open(YAML_PATH, "w") as f: OmegaConf.save(params, f) print("YAML file successfully updated")
[docs] def summarize_graphClustering(self): """ Summarizes the graph clustering results. Returns ------- dict A dictionary of the clusters and their corresponding graph members. The keys are the cluster names and the values are lists of graph file names. """ return self.clusters